February 17, 2016 at 21:05
Camus et al, Leuk Lymphoma 2016
Leuk Lymphoma. 2016 Sep;57(9):2171-9.
doi: 10.3109/10428194.2016.1139703.
Epub 2016 Feb 17.
Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma.
Camus V, Sarafan-Vasseur N, Bohers E, Dubois S, Mareschal S, Bertrand P, Viailly PJ, Ruminy P, Maingonnat C, Lemasle E, Stamatoullas A, Picquenot JM, Cornic M, Beaussire L, Bastard C, Frebourg T, Tilly H, Jardin F.
Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy harboring frequent targetable activating somatic mutations. Emerging evidence suggests that circulating cell-free DNA (cfDNA) can be used to detect somatic variants in DLBCL using Next-Generation Sequencing (NGS) experiments. In this proof-of-concept study, we chose to develop simple and valuable digital PCR (dPCR) assays for the detection of recurrent exportin-1 (XPO1) E571K, EZH2 Y641N, and MYD88 L265P mutations in DLBCL patients, thereby identifying patients most likely to potentially benefit from targeted therapies. We demonstrated that our dPCR assays were sufficiently sensitive to detect rare XPO1, EZH2, and MYD88 mutations in plasma cfDNA, with a sensitivity of 0.05%. cfDNA somatic mutation detection by dPCR seems to be a promising technique in the management of DLBCL, in addition to NGS experiments.
doi: 10.3109/10428194.2016.1139703.
Epub 2016 Feb 17.
Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma.
Camus V, Sarafan-Vasseur N, Bohers E, Dubois S, Mareschal S, Bertrand P, Viailly PJ, Ruminy P, Maingonnat C, Lemasle E, Stamatoullas A, Picquenot JM, Cornic M, Beaussire L, Bastard C, Frebourg T, Tilly H, Jardin F.
Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy harboring frequent targetable activating somatic mutations. Emerging evidence suggests that circulating cell-free DNA (cfDNA) can be used to detect somatic variants in DLBCL using Next-Generation Sequencing (NGS) experiments. In this proof-of-concept study, we chose to develop simple and valuable digital PCR (dPCR) assays for the detection of recurrent exportin-1 (XPO1) E571K, EZH2 Y641N, and MYD88 L265P mutations in DLBCL patients, thereby identifying patients most likely to potentially benefit from targeted therapies. We demonstrated that our dPCR assays were sufficiently sensitive to detect rare XPO1, EZH2, and MYD88 mutations in plasma cfDNA, with a sensitivity of 0.05%. cfDNA somatic mutation detection by dPCR seems to be a promising technique in the management of DLBCL, in addition to NGS experiments.
Pubmed, PMID: 26883583